- 1. $\begin{bmatrix} C \\ 2 \end{bmatrix}$
- 2. A
3. B
- 3. B
- 4. E
5. C
- 5. C
6. B
- 6. B
- 7. B
- 8. B
9. C 9. C
- 10. D
- 11. D
- 12. D
- 13. B 14. E
- 15. A
- 16. D
- 17. A
- 18. C
- 19. D
- 20. E
- 21. A
- 22. B
- 23. E
- 24. C
- 25. A
- 26. E
- 27. A
- 28. D
- 29. B
- 30. A

1. C Note that if *n* is even, $(-n)i^{-n} + ni^{n} = 0$, if *n* is odd $(-n)i^{-n} + ni^{n} = 2ni^{n}$ So, the sum is

$$
2(9i - 7i + 5i - 3i + i) = 10i
$$

- 2. A $|(2+i)^{10}(3+4i)| = |2+i|^{10}|3+4i| = \sqrt{5}^{10} \cdot 5 = 5^5 \cdot 5 = 3125 * 5 = 15625$
- 3. B $\arg(-4 + i) = \pi \tan^{-1} \frac{1}{4}$ $\frac{1}{4}$, arg(-1 – 4*i*) = $-\frac{\pi}{2}$ $\frac{\pi}{2}$ – tan⁻¹ $\frac{1}{4}$ $\frac{1}{4}$. Thus the positive difference between the two arguments is $\frac{3\pi}{2}$.
- 4. E Using the fact that $cosh(\theta) = \frac{e^{\theta} + e^{-\theta}}{2}$ $\frac{e^{e}}{2}$, 2 cosh $(\theta) = e^{\theta} + e^{-\theta}$. By inspection, $x = e^{\theta}$ (or $e^{-\theta}$, but the answer remains the same). $x^2 + \frac{1}{\sqrt{2}}$ $\frac{1}{x^2} = e^{2\theta} + e^{-2\theta} = 2 * \frac{e^{2\theta} + e^{-2\theta}}{2}$ $\frac{1}{2}$ = 2 cosh (2θ) .
- 5. C Let $x = 5z$. Then, $x^5 = (5z)^5 = 5^5 * z^5 = 3125 z^5 = 3125$. So, $z^5 = 1$. We will solve for the requested product with this scaled version of the problem. Then, since we are computing the product of 4 distances, and each distance was scaled down by a factor of 5, we will multiply by $5^4 = 625$. $z^5 - 1 = 0$ holds. $z^5 - 1 = 0$ $(z-1)(z⁴ + z³ + z² + z + 1) = 0$. WLOG let M lie on the real axis, so M represents the real root $z = 1$. For the other 4 roots, it is true that $z^4 + z^3 + z^2 + z +$ 1 = 0. Letting the others roots be r_1, r_2, r_3 , and r_4 , this means $(z - r_1)(z - r_2)(z$ r_3)($z - r_4$) = $z^4 + z^3 + z^2 + z + 1$. The product of the distances from $z = 1$ to the other roots is $|(1 - r_1)(1 - r_2)(1 - r_3)(1 - r_4)|$, so all we need to do is plug $z = 1$ into $|(z - r_1)(z - r_2)(z - r_3)(z - r_4)| = |z^4 + z^3 + z^2 + z + 1|$. This yields 1 + $1 + 1 + 1 + 1 = 5$. Recall, we need to multiply this by 625, so the final answer is $5 * 625 = 3125$
- 6. B First, $\frac{1+i\sqrt{3}}{\sqrt{3}-i} = \frac{2 \text{ cis}(\frac{\pi}{3})}{2 \text{ cis}(-\frac{\pi}{3})}$ $\frac{\pi}{3}$ $\frac{1}{2}$ cis $\left(-\frac{\pi}{6}\right)$ $\frac{1}{\frac{\pi}{6}}$ = cis $\left(\frac{\pi}{3}\right)$ $\frac{\pi}{3} + \frac{\pi}{6}$ $\left(\frac{\pi}{6}\right)$ = $cis\left(\frac{\pi}{2}\right)$ $\left(\frac{\pi}{2}\right)$ = *i*. Motivated by the approximate 2:1 ratio between the exponents of $5 + 12i$ and $-119 + 120i$, we try computing $(5 + 12i)^2$. $(5 + 12i)^2 = 25 - 144 + 120i = -119 + 120i$. So, $(5 + 12i)^{31} =$ $(5+12i)*(5+12i)^{30} = (5+12i)(-119+120i)^{15} \cdot \frac{(5+12i)^{31}}{(-119+120i)^{15}} =$ $(5 + 12i)$. Our answer is $(5 + 12i) * i = -12 + 5i$
- 7. B Note that the angle is equal to arctan $\left(\frac{1}{100}\right)$. Using small-angle approximation, $tan(\theta) \sim \theta$ when θ is small. Thus, $arctan(\theta) = \theta$ when θ is small. *Note that $\theta \sim 0.009999$
- 8. B In this situation, Team A will have a team score of $7 * 4 + 2 * 10i = 28 + 20i$, while Team B will have a team score of $3 * 4 + 3 * 10i = 12 + 30i$. The magnitude of the score of Team A is $\sqrt{20^2 + 28^2} = \sqrt{400 + 784} = \sqrt{1184}$. The magnitude of the score of Team B is $\sqrt{12^2 + 30^2} = \sqrt{144 + 900} = \sqrt{1044}$. 1184 > 1044, so Team A is the winning team. $\sqrt{1184} = 4\sqrt{74}$
- 9. C For this problem, we will consider the minimum score Team A could have gotten given how many tossups they got correctly, and the maximum score Team B could have gotten given how many tossups Team A got correctly. We can calculate this with the assumptions that 1) Team A gets no bonuses correct, and 2) Team B gets all

the remaining toss-ups correct and all the associated bonuses. We can make a table from keeping track of these scores if Team A gets anywhere from 5 to 10 tossups correct

Examining the table, Team B has a score with magnitude well above Team A's score for 5, 6, and 7 toss-up questions answered correctly by Team A. At 8 toss-ups, Team A's score magnitude becomes larger than Team B's for the first time.

10. D Since the final complex scores need to be equal, the real and imaginary components need to be equal. This means they get the same number of toss-ups and bonuses. Let $a =$ the number of tossups each team get

 $b =$ the number of bonus questions each team get

We get the inequality $0 \le b \le a \le 5$ since the maximum number of toss ups both team can get is 5 and they cannot get more bonus questions than tossups.

Solving the number of $b + (a - b) + (5 - a) = 5$ is simply stars and bars ($5 + 3 - 1$ $) = 21$

11. D The graph of
$$
|z| + |1 + z| = 2
$$
 is an ellipse with $2a = 2 \rightarrow a = 1$, and $2c = 1 \rightarrow c = \frac{1}{2}$.
\n
$$
b = \sqrt{a^2 - c^2} = \sqrt{1 - \frac{1}{4}} = \sqrt{\frac{3}{4}} = \frac{\sqrt{3}}{2}
$$
. The area enclosed by the ellipse is given by $\pi ab = 1 * \frac{\sqrt{3}}{2} * \pi = \frac{\pi \sqrt{3}}{2}$

12. D Since 8 of the 9 points remain the same, it is convenient to compute the average of these 8 points first; it will remain the same. From $z^8 - 1 = 0$, the 8th roots of unity sum to $-\frac{b}{a}$ $\frac{b}{a} = 0$, so the average of these 8 points is 0. So, assuming (x_9, y_9) are the coordinates of the point with magnitude 2 (starts out at $2 + 0i$), $x_1 + x_2 + x_3 +$... + $x_8 = 0$ and $y_1 + y_2 + y_3 + ... + y_8 = 0$. This means the coordinates of the average point are $\left(\frac{x_9}{2}\right)$ $\frac{y_9}{9}, \frac{y_9}{9}$ $\frac{\sqrt{9}}{9}$. This is just a scaled down version of the circle traced by the point with magnitude 2. Specifically, each dimension is scaled down by a factor of 9, so the area is $2^2 * \frac{\pi}{2}$ $\frac{\pi}{9^2} = \frac{4\pi}{81}$ 81

13. B
$$
f(x) = 2e^{7ix}
$$
 satisfies everything given. Thus $f\left(\frac{11\pi}{3}\right) = 2e^{\frac{77\pi}{3}i} = 1 - i\sqrt{3}$

*Note that $2e^{ax}$ is the general form of the functional equation $2f(x + y) = f(x)f(y)$ if differentiability is given.

There is technically an infinite number of possible values for a that satisfy the initial condition, so long $\frac{a\pi}{6}$ is coterminal to $\frac{7\pi}{6}$. In other words, $a = 12k + 7$ for any integer k. They all yield the same outcome, as $12k\left(\frac{11\pi}{2}\right)$ $\frac{1}{3}$ is a multiple of 2π . 14. E We want the smallest possible value of $|r| = |\theta|$, where θ is coterminal with $\frac{\pi}{3}$. Since θ is in the domain of all real numbers, it can be positive or negative, the 2 values to consider are $\theta = \frac{\pi}{2}$ $\frac{\pi}{3}$ + 2 π , and $\theta = \frac{\pi}{3}$ $\frac{\pi}{3}$ – 2 π . The magnitudes are, respectively, $\frac{7\pi}{3}$ and $\frac{5\pi}{3}$. The lesser of these 2 values is $\frac{5\pi}{3}$ 15. A The numerator can be factored over complex numbers as $\sqrt{(x+i)(x-i)}$, so the limit becomes $\lim_{x \to i} \frac{\sqrt{(x+i)(x-i)}}{x-i}$ $\frac{(-i)(x-i)}{x-i} = \sqrt{\frac{x+i}{x-i}}$ $\frac{x+i}{x-i}$. If we plug in $x = i$, we get $\sqrt{\frac{2i}{0}}$ $\frac{2i}{0}$. There is a 0 in the denominator but not in the numerator, so this limit does not exist 16. D There is not enough information to solve for a, b, c , and d directly. We need to figure out a way to find $9b - 16c$ despite this. $x + yi = a + bi + ci - d = (a - d) +$ $(b + c)i$, so we know $Re(x + yi) = a - d = 1$. Also, $3x + 4y = 5 + 10i \rightarrow 3a + 12i$ $3bi + 4c + 4di = 5 + 10i$. Setting the real and imaginary parts equal individually, $3a + 4c = 5$, and $3b + 4d = 10$. Since there is only one equation with b, we scale it in order to have a 9b: $(3b + 4d) * 3 = 9b + 12d = 10 * 3 = 30$. From $a - d = 1$, we have $12d = 12 * (a - 1) = 12a - 12$. From $3a + 4c = 5$, we have $12a = 4 *$ $(5-4c) = 20 - 16c$. Finally, $9b + 12d = 9b + (12a - 12) = 9b +$ $(20 - 16c) - 12 = 30 \rightarrow 9b - 16c = 30 + 12 - 20 = 22$.

- 17. A Let θ be the answer. The magnitude of the complex number $20 + 21i$ is $\sqrt{20^2 + 21^2} = \sqrt{400 + 441} = \sqrt{841} = 29$. This means $\cos(\theta) = \frac{20}{30}$ $\frac{20}{29}$, sin (θ) = 21 $\frac{21}{29}$. tan $(\theta) = \frac{\sin(\theta)}{\cos(\theta)}$ $\frac{\sin(\theta)}{\cos(\theta)} = \frac{21}{20}$ $\frac{21}{20}$. The reciprocal functions will by 1 divided by the respective normal function. The only choice that represents one of these relationships accurately is A.
- 18. C It is possible to square both sides of the equation and solve for a and b directly.

However, notice that the right-hand side can be written as $\sqrt{(5-1)+2\sqrt{-1}\sqrt{5}} =$ $\sqrt{(15^2 + i^2)} + 2i\sqrt{5} = \sqrt{(\sqrt{5} + i)^2}$. So, $z = \sqrt{5} + i$, and $a + b\sqrt{5} = \sqrt{5} + 1$

19. D
$$
\ln(1 - i\sqrt{3}) = \ln(2 \operatorname{cis}(\frac{-\pi}{3})) = \ln(2) + \ln(e^{-\frac{i\pi}{3}}) = \ln(2) - \frac{i\pi}{3}
$$
.

20. E
$$
cis(a) * cis(b) = cis(ab)
$$
, so $\prod_{n=-90}^{90} cis(n^{\circ}) = cis(\sum_{n=-90}^{90} n^{\circ}) = cis(0) = 1$

21. A By inspection, the two positive roots of $2^x - x^2$ are 2 and 4 $(2^2 = 2^2, 2^4 = 4^2)$. The distance between 2 and 4 on the Argand Diagram is $4 - 2 = 2$

22. B
$$
2^a - a^2 = 0 \rightarrow 2^a = a^2
$$
. $\ln(2^a) = \ln(a^2) \rightarrow a \ln(2) = 2 \ln(a)$. $a = r \operatorname{cis}(\theta)$, so
\n $r \operatorname{cis}(\theta) * \ln(2) = 2 \ln(r \operatorname{cis}(\theta)) = 2(\ln(r) + i\theta)$. $\operatorname{cis} \theta = \frac{2 \ln(r) + 2i\theta}{r \ln(2)}$. $\sin(\theta) =$
\n $Im\left(\operatorname{cis}(\theta)\right) = \frac{2\theta}{r \ln(2)}$.
\n*Note that there are non-real solutions, thus *D* is not an acceptable answer choice.

23. E A: $2^x \gg x^2$ as $x \to \infty$

B: $2^x - x^2 = -x^2$ as $x \to -\infty$ C: All numbers are complex, thus 2 is a complex root. D: Graphing 2^x , x^2 quickly reveals it does have a negative real root. 24. C $x = 1$ is not a non-real solution, so we want the number of non-real solutions to x^3 – $4x^2 + 10x - 20 = 0$. Since the coefficients are real, we know this equation will have an even number of non-real solutions. The sum of squares of the roots (with roots a, b, c) is $a^2 + b^2 + c^2 = (a + b + c)^2 - 2(ab + ac + bc) = \left(-\frac{b}{a}\right)$ $\left(\frac{b}{a}\right)^2$ – $2\left(\frac{c}{a}\right)$ $\binom{c}{a}$ = (-4)² – 2(10) = 16 – 20 = –4. –4 < 0, so there is at least 1 non-real solution. This means there are 2 non-real solutions. 25. A Let $a = 1 + \frac{x}{1+x}$ $1+\frac{x}{x}$ Then $x = \frac{4}{x}$ $\frac{4}{a}$ from the original equation. Also, $a = 1 + \frac{x}{a}$ $\frac{x}{a} \rightarrow a =$ $1 + \frac{\frac{4}{a}}{a}$ $\frac{1}{a}$ $\frac{\overline{a}}{a}$. $a^3 - a^2 - 4 = 0$. $a = 2$ works. *x* is real so $a = \frac{4}{x}$ $\frac{a}{x}$ is real, and $a = 2$ is the only real root. $x = \frac{4}{x}$ $\frac{4}{a} = \frac{4}{2}$ $\frac{1}{2}$ = 2 26. E I is false: This property does not hold for complex numbers. For example, $\sqrt{-1}$ * $\sqrt{-1} = i * i = -1 \neq \sqrt{(-1)(-1)} = 1$. II,III are also false: For example, the principal value of ln((-1)²) = ln(1) = 0 ≠ 2 ln(-1) = 2π*i*. 27. A The 2nd and 3rd equations add up to the requested quantity ((7x + 4y + 5z) + $(5x + 6y + 7z) = (12x + 10y + 12z)$. So, $(6 + i) + (4 + i) = 10 + 2i$ 28. D Note that it does not work to assume the roots of $f(x)$ come in complex conjugates, because that would require all the coefficients to be real, which is not the case. Let $g(x) = f(xi)$ $g(x) = x^4 - aix^3 - bx^2 + cix + d$ By definition, $g(x)$ has real coefficients, thus having complex conjugate roots. Since $(2+i)$ $\frac{+i}{i}$ = 1 – 2*i*, $\frac{(1+3i)}{i}$ $\frac{f(3i)}{i}$ = 3 – *i* are roots of $g(x)$, $(1 + 2i)i = i - 2i(3 + i)i = -1 + 3i$ must be roots of $f(x)$ − \boldsymbol{b} α $= (2 + i) + (-2 + i) + (1 + 3i) + (-1 + 3i) = 8i$ 29. B A is a line (the perpendicular bisector). C is the null set because it is not possible for the difference of distances to two points to be greater than the distance between the points. D is the entire Argand plane. 30. A Adding the two equation resembles $cis(x)$. Multiplying the second equation by i then adding gives $cis(x) +$ $cis(2x)$ 2 + $cis(3x)$ 4 … = 1 2 $+ri$ Using the fact that $e^{ix} = cis(x)$, the expression is geometric series with first term e^{ix} and common ratio $\frac{e^{ix}}{2}$ 2 \boldsymbol{e} $i\mathbf{x}$ 1

$$
\frac{e^{ix}}{1-\frac{e^{ix}}{2}} = \frac{1}{2} + ri
$$

$$
\rightarrow \frac{1 - \frac{e^{ix}}{2}}{e^{ix}} = \frac{\frac{1}{2} - ri}{r^2 + \frac{1}{4}}
$$

Adding $\frac{1}{2}$ to both sides,

$$
e^{-ix} = \frac{\left(\frac{1}{2} + \frac{r^2}{2} + \frac{1}{8}\right) - ri}{r^2 + \frac{1}{4}} = \frac{(4r^2 + 5) - 8ri}{8r^2 + 2}
$$

Using the fact that the magnitude of $e^{-ix} = 1$, $(8r^2 + 2)^2 = (4r^2 + 5)^2 + (8r)^2$ $64r^4 + 32r^2 + 4 = 16r^4 + 40r^2 + 25 + 64r^2$ $48r^4 - 72r^2 - 21 = 0$ $16r^4 - 24r^2 - 7 = (4r^2 - 7)(4r^2 + 1) \rightarrow r = \frac{\sqrt{7}}{2}$ 2